博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
L0/L1/L2范数的联系与区别
阅读量:5943 次
发布时间:2019-06-19

本文共 1290 字,大约阅读时间需要 4 分钟。

范数(norm)


数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。

这里简单地介绍以下几种向量范数的定义和含义 

1、 L-P范数 


与闵可夫斯基距离的定义一样,L-P范数不是一个范数,而是一组范数,其定义如下: 

 

根据P 的变化,范数也有着不同的变化,一个经典的有关P范数的变化图如下: 

 

上图表示了p从无穷到0变化时,三维空间中到原点的距离(范数)为1的点构成的图形的变化情况。以常见的L-2范数(p=2)为例,此时的范数也即欧氏距离,空间中到原点的欧氏距离为1的点构成了一个球面。

实际上,在0时,Lp并不满足三角不等式的性质,也就不是严格意义下的范数。以p=0.5,二维坐标(1,4)、(4,1)、(1,9)为例,。因此这里的L-P范数只是一个概念上的宽泛说法。

2、L0范数 


当P=0时,也就是L0范数,由上面可知,L0范数并不是一个真正的范数,它主要被用来度量向量中非零元素的个数。用上面的L-P定义可以得到的L-0的定义为: 

 

这里就有点问题了,我们知道非零元素的零次方为1,但零的零次方,非零数开零次方都是什么鬼,很不好说明L0的意义,所以在通常情况下,大家都用的是: 

表示向量x中非零元素的个数。

对于L0范数,其优化问题为: 

在实际应用中,由于L0范数本身不容易有一个好的数学表示形式,给出上面问题的形式化表示是一个很难的问题,故被人认为是一个NP难问题。所以在实际情况中,L0的最优问题会被放宽到L1或L2下的最优化。

3、L1范数 


L1范数是我们经常见到的一种范数,它的定义如下: 

 

表示向量中非零元素的绝对值之和

L1范数有很多的名字,例如我们熟悉的曼哈顿距离、最小绝对误差等。使用L1范数可以度量两个向量间的差异,如绝对误差和(Sum of Absolute Difference): 

对于L1范数,它的优化问题如下: 

 

由于L1范数的天然性质,对L1优化的解是一个稀疏解,因此L1范数也被叫做稀疏规则算子。通过L1可以实现特征的稀疏,去掉一些没有信息的特征,例如在对用户的电影爱好做分类的时候,用户有100个特征,可能只有十几个特征是对分类有用的,大部分特征如身高体重等可能都是无用的,利用L1范数就可以过滤掉。

4、L2范数


L2范数是我们最常见最常用的范数了,我们用的最多的度量距离欧氏距离就是一种L2范数,它的定义如下: 

 

表示向量元素的平方和再开平方。 

像L1范数一样,L2也可以度量两个向量间的差异,如平方差和(Sum of Squared Difference): 

对于L2范数,它的优化问题如下: 

 

L2范数通常会被用来做优化目标函数的正则化项,防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。

5、范数


当时,也就是范数,它主要被用来度量向量元素的最大值,与L0一样,通常情况下表示为

 来表示

转载于:https://www.cnblogs.com/tectal/p/10131126.html

你可能感兴趣的文章
CoinWhiteBook:区块链在慈善事业中的应用
查看>>
Mac上基于Github搭建Hexo博客
查看>>
阿里云服务器ECS开放8080端口
查看>>
Spring中实现监听的方法
查看>>
使用Tooltip会出现一个问题,如果行上出现复选框
查看>>
11.03T1 DP
查看>>
P2924 [USACO08DEC]大栅栏Largest Fence
查看>>
jQuery操作table tr td
查看>>
工作总结:MFC自写排序算法(升序)
查看>>
螺旋队列问题之二
查看>>
扩展运算符和解构赋值的理解
查看>>
手机H5显示一像素的细线
查看>>
Menu 菜单栏
查看>>
Integer跟int的区别(备份回忆)
查看>>
集合解析
查看>>
详解分布式应用程序协调服务Zookeeper
查看>>
软件工程之构建之法
查看>>
UVa 10902
查看>>
Mathf.Sin正弦
查看>>
禁止浏览器缓存js
查看>>